
www.manaraa.com

Degree Project

 Joanna Juziuk

2011-06-21

Subject: Computer Science

Level: Bachelor

Course code: 2DV00E

Towards a Classification of Design Patterns

for Web Programming Based on Analysis

of Web Application Frameworks

www.manaraa.com

Abstract

The evolution of WWW leads to continuous growth of demands that are
placed on web applications that results in creating sophisticated web architec-
tures. To minimize the complexity behind their design, software frameworks
were introduced. There are hundreds of web frameworks, hence the choice of
the right framework can be seen as searching for the holy grail.

This thesis investigates the possibility of creating and validates usefulness
of a classification scheme which organizes well-known object-oriented design
patterns found in popular web frameworks: Apache Struts, Ruby on Rails,
CakePHP and Zend Framework. The proposed classification scheme is based
on two criteria: purpose and scope. The classification of such patterns that
capture design rationale behind the decisions and best practices, is potentially
important for building or restructuring a generic web framework, for capturing
expertise knowledge and for orientation purposes in the problem domain - web
engineering.

The methodology used in this thesis is based on case studies and the
identification of design patterns in web frameworks uses manual approaches.
The results revealed popular design patterns in web frameworks and that
the proposed classification scheme in a form of a 2D matrix must be refined,
because relationships among design patterns in web frameworks are important
and have a tendency to be formed as complex hierarchies. It is proposed to
use a classification scheme in a form of a map or a tree when refining the
scheme.

Keywords
design patterns, web frameworks, Rails, Zend Framework, Struts, CakePHP,
web programming, classification

i

www.manaraa.com

List of Figures
1.1 Web frameworks examples . 1
2.1 Pattern anatomy . 4
2.2 Pattern map . 5
2.3 Design pattern example - Visitor - class diagram 6
2.4 Design pattern example - Visitor - sequence diagram 7
2.5 GoF matrix . 7
2.6 Zimmer classification example . 8
2.7 Buschmann matrix example . 9
2.8 PIML structure example . 11
2.9 MVC architecture . 14
2.10 Framework architecture . 15
3.1 Flow chart of generic classification procedure 17
3.2 Identification steps . 18
4.1 Number of books about web frameworks (Amazon.com, 17-02-2011) . 19
4.2 Job trends for web frameworks (scale: absolute) 20
4.3 Job trends for web frameworks (scale: relative) 20
4.4 Google Trends chart for web frameworks (with regard to fig. 4.3) . . 21
4.5 Google Trends chart for web frameworks (with regard to fig. 4.2) . . 21
4.6 Proposed classification matrix example 22
4.7 Architecture of Ruby on Rails . 23

ii

www.manaraa.com

List of Tables
2.1 Design pattern example - Visitor - elements 6
2.3 Architectural styles . 9
3.1 Reference shortcuts . 17
4.1 Purpose criteria . 22
4.2 Design patterns in Ruby on Rails . 24
4.3 Design patterns in Zend Framework 25
4.4 Design patterns in CakePHP . 26
4.5 Design patterns in Apache Struts . 27
5.1 Example of classification scheme for Ruby on Rails 30
5.2 Example of classification scheme for Zend Framework 30
5.3 Example of classification scheme for CakePHP 30
5.4 Example of classification scheme for Apache Struts 31

iii

www.manaraa.com

Contents
1 Introduction 1

1.1 Problem . 1
1.2 Purpose and research questions . 2
1.3 Scope . 2
1.4 Outline . 3

2 Background 4
2.1 Design patterns and pattern languages 4

2.1.1 Definition . 4
2.1.2 Example . 6
2.1.3 Approaches to classifications of design patterns 7
2.1.4 Approaches to document design patterns 10
2.1.5 Approaches to identify design patterns 12

2.2 Web application . 13
2.2.1 History . 13
2.2.2 Overview . 13

2.3 Framework . 14
2.3.1 Definition . 14
2.3.2 Web application framework 15

3 Method 16
3.1 Overview . 16
3.2 Literature study . 16
3.3 Classification procedure . 16
3.4 Identifying patterns . 17

4 Realization 19
4.1 Choosing frameworks for the analysis 19
4.2 Creating new classification scheme . 22
4.3 Design patterns in web frameworks 23

4.3.1 Ruby on Rails . 23
4.3.2 Zend Framework . 25
4.3.3 CakePHP . 26
4.3.4 Apache Struts . 27

5 Results and discussion 29

6 Conclusions and further studies 32

Bibliography 33

iv

www.manaraa.com

1 Introduction
Chapter 1 highlights the problem and its root causes to the reader.
It also presents research questions, aim of the thesis and its scope.

1.1 Problem
In general, the problem is rooted in the information overload problems that were
intensified by the rapid and chaotic grow of the WWW (World Wide Web), especially
in the Web 2.0 era (Bawden and Robinson, 2009).

Information overload problems occur when the amount of the information is
greater than a human can handle, so it negatively affects decision making when
selecting right sources of information (Bergamaschi et al., 2010). Moreover, this
”paradox of choice”, as Bawden and Robinson (2009) characterize it, can make peo-
ple feel confused, overwhelmed and powerless. Bawden and Robinson (2009) point
out that those issues are considered as fundamental in Human-Computer interaction
and Information Management domains and they will be challenged over the next
decades. In the field of software engineering and web development, the informa-
tion overload problems concern the quantity and the quality of information created
with overproduced technologies and software frameworks that are used to built web
applications and solve common web programming problems.

The evolution of WWW leads to continuous growth of demands that are placed
on web applications and creation of complex constructions behind their designs. Be-
cause web applications, especially designed as B2B (business-to-business) have come
to be more sophisticated and software developers have become less experienced and
qualified, the Web 2.0 movement has popularized the concept of rapid development
using software frameworks - abstractions in form of software libraries or classes pro-
viding generic functionality to minimize the problem (Jazayeri, 2007). Nevertheless,
the panacea of this problem is problematic itself since there were developed more
than a hundred web applications frameworks (fig. 1.1). Hence the choice of the
right framework can be seen as searching for the holy grail in the web engineering
(Shklar and Rosen, 2009).

Figure 1.1: Web frameworks examples

1

www.manaraa.com

Instead of trying to find the best framework, it would be more reasonable to focus
on creating a generic, environment and language independent web framework or a
framework of web framework that would be the solution of the overload information
problems in this area. Since a web framework is built from components and those are
built using best techniques described as design patterns, a generic framework could
be built on patterns found in popular web frameworks. The amount of identified
patterns could potentially arise information overload problems, so that to estimate
which patterns are essential to build a generic framework, they must be first classified
and a proper classification scheme must be proposed. As Bergamaschi et al. (2010)
claim, classifying is among the useful techniques in overcoming the information
overload problems, like ranking, filtering or grouping.

Moreover, the problem is associated with the existing classifications of software
design patterns. There are many different classification schemes that are not stan-
dardized and strongly dependent on the author’s viewpoints. Many of the classi-
fications are focused on desktop-based programs and were not adapted to the web
application’s problems. Therefore, building such classification scheme could be a
significant input in adapting, organizing and simplifying current schemes.

To conclude, the overall problem concerns overcoming the information overload
problems by logically classifying and organizing information. The classification of
design patterns is potentially important for building or restructuring a generic web
framework, for learning and understanding complex software designs, for captur-
ing expertise knowledge and for orientation purposes in the problem domain - web
programming. It can be compared in terms of achieving simplicity, usability and
comprehension to Carl Linnaeus biological taxonomy created 275 years ago.

1.2 Purpose and research questions
The goal of the thesis is to identify, then validate classification of best techniques
used when for recurring problems in web programming. The study addresses the
following questions:

• Which web application frameworks are popular?

• Which design patterns can be found in the popular web frameworks?

• Is the classification when applied to the pool of found patterns, useful for
learning purposes (simple and easy to understand)?

1.3 Scope
This thesis is focused on the classification of design patterns found in server-centric
web frameworks modeled with object-oriented paradigm and designed to support
dynamic page development. Due to the rapid grow of web frameworks and limited
time of the research, the report is restricted to: Ruby on Rails, CakePHP, Zend
Framework and Apache Struts. The choice was supported by current trends that
are described in more detail in the section 4.1.

The study does not cover Rich Internet Applications and technologies, like Adobe
Flash or Microsoft Silverlight as they are proprietary, non-native to browser’s envi-
ronments and require sandbox plugins to work. In addition, those vendor-specific
technologies, extending current web standards, will be replaced by HTML 5 in the
future according to World Wide Web Consortium plans (Vaughan-Nichols, 2010).

2

www.manaraa.com

1.4 Outline
The thesis is organized by six chapters. Chapter 1 highlights the problem and its
root causes to the reader. It also presents research questions, aim and its scope.
Chapter 2 offers the literature survey and is divided into three sections: first section
describes background theory behind the design patterns, existing approaches to
the classification, documentation and identification of design patterns in software
engineering, the second defines a web application and the third section outlines
the concept of software framework. Chapter 3 focuses on the description of the
methodology. Chapter 4 contains the realization part that includes four sections:
the first section contains results from searching for popular web frameworks, in the
second section, the proposed classification scheme is described. Architectures of
chosen frameworks and results from identification of design patterns are covered in
section 3. Chapter 5 presents validation of the classification scheme on case studies,
discussion and comparative analysis of the results. Chapter 6 ends the thesis with
a discussion on future research.

3

www.manaraa.com

2 Background
Chapter 2 offers the literature survey and is divided into three sections:
first section describes background theory behind the design patterns,
existing approaches to the classification, documentation and identifica-
tion of design patterns in software engineering, the second defines a web
application and the third section outlines the concept of software frame-
work.

2.1 Design patterns and pattern languages
2.1.1 Definition

Designers in every domain are faced with recurring problems. One way of solving
such problems is to use design patterns that contain descriptions of problems with
all documented way of solving them. This manner of perceiving problem solving
was originated in 1970s by an architect - Christopher Alexander.

Alexander (1979, p.28) started to treat patterns as design concepts that should
have a quality without a name (QWAN) - an unexplainable quality which gives
some sense of rightness in the design. According to Alexander (1979) patterns
should consist of three layers (fig. 2.1). First layer embodies a recurring and arising
problem. A problem arises in a situation known as a context that is the second
layer. Third layer is the solution that is a well-known and proven solution to the
problem.

Figure 2.1: Pattern anatomy

A pattern language is a mean to organize design patterns and as natural lan-
guages it should have its own grammar and vocabulary. The main function of such
language is to show grammatical and semantic relationships among patterns and
to depict the decisions that were taken during the design phase (Alexander et al.,
1977). Pattern languages have forms of hierarchy trees, maps or graphs that group
related patterns. For example, in the fig. 2.2, the pattern language map is in a
form of a directed acyclic graph where: A and B patterns must be applied before C
pattern and applying D pattern shows that C pattern should be applied before.

The concept of pattern languages and design patterns was adapted to many dis-
ciplines, particularly the idea was promising to software architects, because it could
improve communications among developers and they could make better decisions
that would avoid time wasting on re-inventing existing solutions. In the context of
software engineering, a pattern can be defined as:

4

www.manaraa.com

”(...) a three-part rule, which expresses a relation between a certain con-
text, a certain system of forces which occurs repeatedly in that context,
and a certain software configuration which allows these forces to resolve
themselves” (Gabriel, cited in Alur et al., 2003, p.10).

Figure 2.2: Pattern map

Software patterns are strongly bounded with the levels of abstraction and devel-
opment phase, thus at least seven categories can be distinguished:

• design patterns
- software design and architecture patterns
that have focus on subsystems and components,

• process patterns
- patterns concerning processes and structures
in organizations involved in software development,

• analysis patterns
- patterns that occur when looking for requirements,

• re-engineering patterns
- patterns that are used when changing software
in order to get better quality and maintainability,

• performance patterns
- patterns that focus on improving software performance,

• domain-specific patterns
- patterns that belong to the specific domain;

• anti-patterns
- patterns that are counterproductive.

This study is focused mainly on design patterns which are always pragmatic, recur-
ring and generative. Those types of software patterns are always connected with
real, concrete solutions that were once adapted, not with new, not implemented nor
tested ideas. The main characteristic of design patterns is also that their implemen-
tation can vary, because they are not meant to be finished designs, but generic.

5

www.manaraa.com

Furthermore it is not possible to describe every problem with patterns that are
not applicable to every context. In addition, it is important to emphasize that
patterns are not silver bullets for software development as Brooks (1995, p.177)
states:

"there is no single development, in either technology or management
technique, which by itself promises even one order of magnitude [tenfold]
improvement within a decade in productivity, in reliability, in simplicity".

However, cataloged patterns as a huge library of expertise and a carrier of history
of successful solutions, can be effective tool for learning and teaching.

2.1.2 Example

An example of a design pattern can be the Vistor pattern. It is stated that the
purpose of this pattern is to "represent an operation to be performed on the el-
ements of an object structure" (Gamma et al., 1995, p.331). Diagrams: fig. 2.3
and 2.4 depict the mechanism behind the pattern. Following objects are created: a
ConcreteVisitor object that implements a visit method with declared as argument, a
ConcreteElement, and the ConreteElement with an accept operation that matches
the visit method in the Visitor. Thus when an element has a visit, it calls the
Visitor’s method that corresponds to its class.

Visitor Abstract class of interface that defines visit operation
for each class of ConcreteElement in the object
structure

ConcreteVisitor Concrete class that provides implementation of every
method declared by Visitor abstract class

Element Abstract class that defines an Accept operation which
should take a Visitor as an argument

ConcreteElement Concrete class that provides implementation of an
Accept method that takes a Visitor as an argument

ObjectStructure Provides an interface that helps the visitor to
enumerate a collection or composite of elements to be
visited by the visitor

Table 2.1: Design pattern example - Visitor - elements

Figure 2.3: Design pattern example - Visitor - class diagram

6

www.manaraa.com

Figure 2.4: Design pattern example - Visitor - sequence diagram

One of the main advantage of the Visitor pattern is that it allows to define a
new operation without changing the original classes of the operated on elements.
For example, it can be useful in situation when we want to perform a set of test
cases on the given set of classes without their modification. Hence among Visitor’s
positive consequences is ease when adding new methods or operations - a new visitor
is only needed when extending functionality over object structure. Although Visitor
pattern can have many highlights, it can have some negative effects. For example,
it breaks encapsulation that is indispensable for object-oriented design.

2.1.3 Approaches to classifications of design patterns

Since the number of design patterns increased, there has been an urgent need to
develop efficient techniques and methods to organize them.

Figure 2.5: GoF matrix

7

www.manaraa.com

GoF (Gang of Four) classification is the first and widely-known classification of
design patterns. The pattern catalog contains 23 design patterns that were previ-
ously undocumented (fig. 2.5). Gamma et al. (1995) proposed to use two dimen-
sional classification based on criterion: scope and purpose. Purposes concern the
problem categories. Three types of purposes were distinguished: creational that
concerns object creation issues, behavioral that is related to managing responsi-
bilities in classes and structural that covers structures or compositions created by
objects/classes. Pattern’s scope is limited to class (class inheritance) or object (ob-
ject composition) representations. In this classification, a pattern might have two
different scopes, for example Adapter.

Zimmer (1995) proves that the same pool of patterns - the GoF catalog, can
be organized using other approaches. Instead of two dimensional matrix, there is a
pattern map that reflects relationships among design patterns. In this classification
there are three types of connections: ”uses”, ”is similar to” and ”can be combined
with”. For example, in the fig. 2.6, Model View Controller uses Composite pattern,
Iterator pattern is similar to Visitor and Composite pattern can be combined with
Visitor.

Figure 2.6: Zimmer classification example

Granularity, functionality and structural principles are key issues to organizing
software patterns by Buschman. As GoF matrix the Buschman classification is also
two dimensional (fig. 2.7), but uses granularity and purpose criteria.

The purpose criterion have 14 categories that are less abstract and more prag-
matic than those proposed in GoF classification. For example, ”Interactive systems”
category contains patterns that are related to human-computer interactions. The
granularity criterion is defined by a pattern category that is connected with the pat-
tern’s abstraction level. Buschmann (1996) defines three pattern levels. First level
is for architecture where the author distinguished architectural styles - patterns for
organizing the entire system. As Buschmann (1996, p.11-12) states "an architec-
tural pattern expresses a fundamental structural organization schema for software
systems; it provides a set of predefined subsystems, specifies their responsibilities,

8

www.manaraa.com

and includes rules and guidelines for organizing the relationships between them".
Table 2.3 exemplifies architectural styles.

Repositories databases, programming environments
Process Control AirCraft/SpaceCraft flight control systems, power stations
Pipes and filters UNIX shell commands, compilers
Layered Systems virtual machines: JVM, OSI model, operating systems

Table 2.3: Architectural styles

Second level of pattern’s abstraction concerns design patterns that are patterns
which are principle, paradigm dependent and that are mainly described in GoF
classification. The third level of pattern’s abstraction is related to implementation
and covers idioms that are low level patterns which are language, technology depen-
dent. Among examples of idioms are: CORBA (Common Object Request Broker
Architecture) patterns or J2EE (Java Platform, Enterprise Edition) patterns.

Figure 2.7: Buschmann matrix example

For large scale Enterprise applications, we can distinguish two classifications -
catalog proposed by Martin Fowler in the book: ”Patterns of Enterprise Application
Architecture” and J2EE blueprints. Both classifications are one-dimensional. Fowler

9

www.manaraa.com

(2003) proposes a purpose as a criterion and classifies patterns into categories: Or-
ganizing Domain Logic, Mapping to Relational Databases, Web Presentation, Con-
currency, Session State, Distribution Strategies etc. J2EE blueprints contains clas-
sification that categorizes patterns using architectural tiers: presentation, business
and integration. Moreover, this catalog contains a pattern map depicting relation-
ships among patterns, that is similar to Zimmer map of GoF patterns. PoEAA
patterns are generally technology independent and directed to different platforms
in difference of J2EE patterns were originally adapted to J2EE technology (Alur
et al., 2003). Although there are some patterns in J2EE blueprints that are strictly
domain dependent, for example Value Object, many of them can be adapted in other
technologies, like: Front or Application Controller. Those patterns are usually built
on patterns found in GoF classification, e.g. Session Facade is built using Facade
pattern.

To sum up, a wide range of classification schemes has been proposed, but none
of them is used in correlation with some official standard.

2.1.4 Approaches to document design patterns

The purpose of formal documentation of design patterns is to provide simple graph-
ical and textual descriptions that would make patterns traceable in the design and
possibly automate all actions related. Specifications of patterns can be produced
either manually or automatically and placed in a source code, in a separate design
document or in a diagram depicting system’s design. In separate documents we can
distinguish to main document formats: using plain text and figures or documents
based on markup languages.

Documentation in the source code can be in a form of comments or annotations
(metadata). To improve traceability of patterns in comments, Meffert (2006) and
Torchiano (2002) propose to use special extensions to standardized documenting
frameworks, like Javadoc. Patterns properties could be described using specially
defined tags, for example: @intent, @problem, @drawback, @need (Meffert, 2006),
or @pat.name, @pat.role, @pat.task, @pat.use (Torchiano, 2002). Similar approach,
but more automatic, is suggested in DPDOC that is a prototype CASE (Computer-
aided software engineering) tool for APPLAB and supports documenting patterns
via annotating the source code, rule checking and automatic role derivation. DP-
DOC can be adapted to any grammar, but only supports seven GoF patterns which
it treats as language constructs (Cornils and Hedin, 2000).

Gamma et al. (1995) introduce in GoF catalog separate documentation of pat-
terns that was done manually and uses plain text with Object Modeling Technique
(OMT) charts. This documentation consists of following sections: ’Pattern Name
and Classification’, ’Intent’ (purpose of the pattern), ’Also Known As’, ’Motiva-
tion’ (Forces), ’Applicability’, ’Structure’, ’Class and Interaction Diagram’, ’Partic-
ipants’, ’Collaboration’, ’Consequences’, ’Implementation’, ’Sample Code’, ’Known
Uses’ and ’Related Patterns’ (Gamma et al., 1995).

PIML (Pattern Information Markup Language) is an example of a way of doc-
umenting patterns that is expressed in SGML (Structured Generalized Markup
Language) which is a XML-based markup language that was standardized as ISO
8879:1986 (Ohtsuki et al., 1997). A document describing a design pattern consists
of three parts: plain text explanations, structure information as class diagram, be-
havior information as pseudo code that would support OMT charts (fig. 2.8).

10

www.manaraa.com

<pattern name= ”Memento”>
<intent> </intent>
<motivation> </motivation>
<applicability> </applicability>
<consequences> </consequences>
<implementation> </implementation>
<sample_code> </sample_code>
<known_uses> </known_uses>
<related_patterns> </related_patterns>
<structure> </structure>

</pattern>

Figure 2.8: PIML structure example

Dietrich and Elgar (2005) select OWL (Web Ontology Language) as another
markup language that can be used to document design patterns. OWL is a markup
language that has semantics based on description logic. It is an extension to RDF
(Resource Description Framework) which is a family of World Wide Web Consortium
(W3C) specifications originally designed as a metadata data model. According to
RDF Working Group (2004), RDF “integrates a variety of applications from library
catalogs and world-wide directories to syndication and aggregation of news, software,
and content to personal collections of music, photos, and events using XML as an
interchange syntax“. In this approach design patterns are represented as resources
identified by uniform resource identifiers (URI) which makes the documentation
more open and extensible.

LePUS (LanguagE for Patterns Uniform Specification) is a visual language based
on defined symbols and Prolog logic constructs. According to Eden et al. (1998),
LePUS supports formal documentation of design patterns, specifications’ validations
and proving relations among design patterns.

Another visual language for modeling design patterns is DPML (Design Pattern
Modeling Language) created by Mapelsden et al. (2002). Its main advantage is that
is compatible with UML (Unified Modeling Language) that is a standard modeling
language for object-oriented software. DPML links design patterns participants with
UML diagrams elements.

UML lacks support for visualizing design patterns. The closet diagram to depict
design patterns is a collaboration diagram which role is to illustrate relations and
interaction between objects. Hence extensions to UML must be introduced to visual-
ize fully design patterns. Dong and Yang (2003) introduce UML Profile that defines
new stereotypes, constraints, and tagged values that would support specification of
design patterns.

Another mean to describe design patterns is Balanced Pattern Specification Lan-
guage (BPSL) (Taibi and Chek Ling Ngo, 2003). BPSL notation is simple and uses
First Order Logic (FOL) for structural aspects and Temporal Logic of Actions (TLA)
for behavioral properties. BPSL can specify rules that are behind UML meta-model.

Automatic or semi-automatic documentation of patterns can be obtained when
a developer uses a design-decision-detection tool while designing the system. Such
tools allow to pick certain patterns and glue it with the design. An example of
such tool is POD (Pattern-Oriented Design) tool that supports visually pattern

11

www.manaraa.com

composition using three view levels: Pattern-Level, Pattern Interfaces, Detailed
Pattern-Level. The outcome of the tool is an UML class diagram (Yacoub et al.,
2000).

Automatic approaches can guarantee high level of quality of documentation when
compared to manual approaches, because every change in the code will be automat-
ically updated in the documentation, therefore the design can never be outdated.
Furthermore, manual documenting is always a standalone task for developers and it
can be not prioritised when the project is close to the deadline.

2.1.5 Approaches to identify design patterns

The goal of identifying design patterns is to improve understandability and main-
tainability of the software. Information about the patterns can be found directly
from the software documentation if a designer included detailed design decisions or
used special CASE tools for documenting design patterns. In case of open source
software that often lacks standardized artifacts, the information about used design
patterns can be also found on official forums or users’ groups etc. The limitations
in pattern’s detection in documention are poor quality of source code documenta-
tion or outdated design artifacts. If the documentation makes patterns visible and
traceable in the code, then pattern detection can be done automatically.

Design patterns can be also extracted from the source code manually or semi-
automatically or automatically using reverse engineering techniques. Manual pat-
tern identification can be characterized by tedious source investigation activities,
like looking for classes that follow certain naming or coding conventions, for ex-
ample an adapter’s class can be named DBAdapter. Semi-automatic approaches
to detect design patterns include mainly rule-based mechanisms, for example Niere
et al. (2002) present an approach to detect patterns based on static analysis of the
source code that is represented as ASG (Abstract Syntax Graph) and graph trans-
formation rules. As for the automatic approaches, Dori et al. (2005) name four
ways: identifying key structures, searching for class structures, fuzzy logic based
search and metrics based search.

First approach is characterized by creating a database with knowledge about a
pattern that includes pattern’s characteristics and features that this pattern should
not manifest - positive and negative criteria. En exemplary prototype using identi-
fying minimal structure approach with positive and negative criteria, that includes
all GoF patterns, is presented by Philippow et al. (2005). Dori et al. (2005) pro-
pose to create a knowledge base using OPM (Object Process Methodology) that
will hold meta-models of GoF patterns with positive and negative criteria. Second
approach compares class structures with a pattern class structure. Third approach
incorporates data mining, artificial intelligence, tree or graph algorithms. Most of
the algorithms are based on traversing and filtering a graph that represents program
structure. The limitation of using these algorithms is incapability of sufficient ex-
traction or interpretation of the purpose from the code. Apart from static analysis
of source code, dynamic analysis of software runtime can be performed to detect
design patterns. Wendehals (2003) introduces dynamic analysis as a validation of
static analysis results. The last approach concerns software quality metrics, like
depth of inheritance tree or number of children, that can be calculated for a given
pattern. Results and given values are checked if they closely match (Antoniol et al.,
1998). Gueheneuc et al. (2004) call this kind of algorithm - fingerprinting of design
patterns where a fingerprint is a value of specified metrics.

12

www.manaraa.com

Using reverse engineering techniques in identification of design patterns is more
time- and cost-efficient than using manual approaches. However automated ap-
proaches cannot guarantee accuracy and exact pattern identification, because some
patterns are very similar in structure or in behavior.

2.2 Web application
2.2.1 History

In the beginning of WWW that was launched as a CERN (The European Orga-
nization for Nuclear Research) project, it resembled a static bank of articles and
other texts that allowed to gain access, gather and associate information by sci-
entists. The information was presented as HTML (HyperText Markup Language)
documents that were requested using HTTP (Hypertext Transfer Protocol). The
requests were made by client computers using web browsers, sent to the server com-
puters that stored the documents and sent back responses to the clients. As the
popularity of the WWW was quickly growing, new non-scientific users put demands
on extra requirements, like communication, entertainment, shopping etc, resulting
that new server side scripting technologies were created, for example ASP (Active
Server Pages), JSP (JavaServer Pages) or PHP (PHP: Hypertext Preprocessor) that
allowed previous requests of static text pages became invocations of concrete appli-
cations on the server side - web applications (Jazayeri, 2007).

2.2.2 Overview

A web application or a webapp is a client-server application that operates in a
distributed environment, for example in Internet and which client is a web browser.
Physical implementation of a webapp architecture is multi-tier.

Typically it consists of three layers: client (presentation), business logic and data
access tier. On the client tier, following technologies are used: HTML, XML, CSS
(Cascading Style Sheets), Flash and JavaScript. On the business logic tier, server-
side scripting technologies, like PHP, JSP, ASP.NET, CGI and ColdFusion Markup
Language, are responsible for programming the logic. On the database tier, there are
database management systems (DBMS) or relational database management systems
(RDBMS) (Shklar and Rosen, 2009).

Every web application conforms to the Separation of Concerns principle which
states that presentation aspect of the application should be isolated from the logic,
therefore it implements Model-View-Controller design pattern or its variants. Model
contains the logic, View presents the Model, and Controller receives requests, in-
structs the View and updates the Model. MVC’s benefit is reduction of the com-
plexity and improvement of re-usability and maintainability.

Fig. 2.9 depicts the mechanism behind MVC. A client sends a HTTP request
to the server where it is received by a Controller (1). Controller sends a request
to the Model for the asked data (2). The Model sends a query to the database (3)
which returns to the model requested data (4). The Model forwards the data to the
Controller (5). It can add some logic to it if necessary. The Controller instructs the
View to represent the data (6). Finally, the View sends the response to the client
(7).

The main advantages of web applications over desktop applications are cross-
platform compatibility, relatively small size since they require almost no disk space,

13

www.manaraa.com

Figure 2.9: MVC architecture

no installation procedure and constant availability in the Internet. However, the
Internet connection and high security risks are disadvantages. Furthermore, desktop
applications have better means to provide better user experience in comparison with
web applications that are limited by web browsers interfaces.

2.3 Framework
2.3.1 Definition

A software framework can be defined as:

“a set of cooperating classes that makes up a reusable design for a spe-
cific class of software. A framework provides architectural guidance by
partitioning the design into abstract classes and defining their respon-
sibilities and collaborations. A developer customizes the framework to
a particular application by sub classing and composing the instances of
the framework classes” (Gamma et al., 1995, p.360).

Frameworks’ architectures can be considered using two views. Johnson (1997) claims
that ”design patterns are the architectural elements of frameworks”. As design pat-
terns, frameworks capture best reusing techniques and strategies for solving prob-
lems. In contrast to design patterns which are more conceptual, frameworks are
focused on implementations and designs. Therefore they can be viewed as sets of
domain specific, concrete forms of design patterns.

Pree (1994) looks at frameworks’ architectures from the perspective of hot and
frozen spots. Frozen spots are those basic components of a framework that became
frozen or unchanged while those parts that are extended by a developer adding new,
project-specific functionality are represented as hotspots (fig. 2.10).

Frameworks tend to be ”extensible skeletons” of applications with code that
has a default behavior and it is non-modifiable, providing only options to extend
or override its functionality via inheritance, in difference of libraries that are self-
contained, have well-defined operations and are called from a code. Furthermore,
frameworks are the main coordinators that invoke the code. This characteristic is
called Inversion of Control and is based on the Hollywood Principle (”don’t call
us, we’ll call you”). As Fowler (2005) emphasis it is essential to the concept of
frameworks. For example, when en event occurs, the flow control is inverted and
only the inversion control in the framework calls back the classes or modules.

14

www.manaraa.com

Figure 2.10: Framework architecture

Using a framework benefits to improved re-usability and enhanced modularity.
It leads to better software quality and reduces the effort needed to maintain the
software, because it localizes the effect of changes in the implementation and de-
sign. All frameworks’ interfaces contribute to the re-usability of the software since
their generic components can be defined and used to create other applications. Thus
frameworks’ re-usability improves developers’ productivity and software’s interop-
erability, quality and performance. However, frameworks have complex designs and
using it requires time for learning their APIs by developers. In the case of abandon-
ing the framework or changing the technology in the future development, time and
cost invested in getting familiar with the framework would be wasted.

2.3.2 Web application framework

A web application framework is a combination of two terms - a web application
and a software framework. It is a software framework that should contain reusable
components associated with common web applications features. A typical web ap-
plication framework should contain modules responsible for: templating system,
security, caching, web services or database access.

Web application frameworks are related to web content management systems
(WCMS) that are web applications which allow to manage and share documents
collaboratively by many users. Some of web application frameworks and WCMS
are focused on creating an API for a specific content management system therefore
there can be defined as content management frameworks (CMF). An example of
such hybrid is Drupal that is both CMS and flexible CMF (Buytaert, 2010).

15

www.manaraa.com

3 Method
Chapter 3 focuses on the description of the methodology used in this
thesis - strategies for literature study, classification and identifiaction
procedures.

3.1 Overview
The method of problem solving used in this thesis has as a natural science approach.
This approach is characterized by a pragmatic scheme: making observations, creat-
ing new theories on this, performing experiments, validating the theories and making
conclusions.

3.2 Literature study
Observations are gathered from the literature study with a trusted-review strategy
in the domain related to software engineering and web development. The most
important contributions to those fields, found by keywords: design patterns classi-
fications and software frameworks, would be included. Additionally, the scientific
databases: ACM Digital Library, IEEE Xplore, Springerlink and DiVA portal will
be searched. The relevance criterion is the fitness with the purpose of the study. Re-
viewing the literature will be a solid foundation for the further investigation which
involves creating a proper classification scheme.

3.3 Classification procedure
Classification is a fundamental process that aims to organize things or concepts
and it is a practice of taxonomy which is a science that includes identification,
grouping, filtering and naming activities. The main benefit of a classification is
that things can be easily found without knowing their details which is very helpful
when people are learning. The most widely known is Linnaean taxonomy that
is a biological classification of living organisms. Unlike biological classifications
that are often hierarchical and tree-structured, classifications in computer science
primarily resemble a multi-dimensional-matrix. Most of CS classifications are topical
or subject-oriented. The concept of topical classifications is rooted in Aristotle’s
philosophy that stated that everything has characteristic properties that can be
used to subjective categorization (Taylor and Joudrey, 2009).

The process of identifying a classification scheme used in this thesis is illustrated
in the fig. 3.1. In order to create a good taxonomy, requirements for the ordering
must be established and on this basis, the draft classification scheme should be
designed and developed. The next step involves the application of the classification
scheme on patterns found by observations in chosen frameworks. If the classification
scheme is not useful, then it must be in the refinement phase until it satisfies the
requirements.

The choice of the frameworks for the case studies will be supported by qualitative
research. Quasi-statistics of the web frameworks popularity factor will be gathered
and the data will be presented in a form of charts. The shortcoming of case studies,
as Kitchenham et al. (1995) claim, is that case studies are detailed, therefore they
may not represent general results and it cannot be verified if this classification
scheme could be applied to every other web framework. Finally, the research will

16

www.manaraa.com

lead to comparing results that will be interpreted and will determine the basis for
drawing conclusions.

Figure 3.1: Flow chart of generic classification procedure

3.4 Identifying patterns
The search for the design patterns will only include well-known design patterns that
were mentioned in the literature. Identifying patterns will concern only manual tech-
niques since automatic approaches cannot guarantee sufficient accuracy in pattern
detections. Other limitation is variety of design patterns in literature and program-
ming languages, because it would make an automatic approach very complex to
define.

The information about design patterns in the frameworks will be gathered from
source codes, documentation, APIs (Application Programming Interfaces) available
in the official frameworks’ websites, forums and other related books. Pattern de-
tection in the source will consist of finding special keywords related to a pattern,
for example a pattern name. The evaluation of information found in separate doc-
uments will be checking if they exist in the source code. Process of identification
method will be conducted according to defined in instructions (fig. 3.2)

shortcut referenced book
GoF Design Patterns: Elements of Reusable Object-Oriented Software

PoEAA Patterns of Enterprise Application Architecture
J2EE Core J2EE Patterns: Best Practices and Design Strategies

Table 3.1: Reference shortcuts

It involves creating a list with found patterns. This list will consist of following
sections: ’Pattern’ - pattern’s name, ’Ref’ - referenced where in the literature it
was mentioned (tab. 3.1), framework’s name, ’Context example’ - where in the

17

www.manaraa.com

source code it was identified, ’Original category’ - category of the pattern from the
referenced literature.

Figure 3.2: Identification steps

18

www.manaraa.com

4 Realization
Chapter 4 contains the realization part that includes four sections: the
first section contains results from searching for popular web frameworks,
in the second section, the proposed classification scheme is described.
Architectures of chosen frameworks and results from identification of
design patterns are covered in section 3.

4.1 Choosing frameworks for the analysis
Although there are many aspects worth considering when choosing a web framework,
for example, context and purpose of the application, personal preferences of the
developers, hosting requirements, scaling or license, the popularity factor is the most
important. Well-liked frameworks are known to have supportive communities that
benefits to: proper documentation that leads to better quality, better support for
novice users, more extensions and plugins to the core functionality, quicker validation
and defect removal that is equivalent with better security. To estimate which web
frameworks are the most popular, three sources were used: Amazon.com: Internet’s
biggest bookstore, Indeed.com: job search engine and Google.com: most popular
search engine.

Amazon service was used to get the values of the metric - number of published
books about the web frameworks. The results are presented in the fig. 4.1. The
most described frameworks are: Ruby on Rails, Apache Struts and ASP.NET MVC.
The least described frameworks are: Yii, Wicket and Tapestry.

Figure 4.1: Number of books about web frameworks (Amazon.com, 17-02-2011)

Another metric that could provide deeper insights on popularity of web frame-
works in the market, is percentage of jobs offerings gathered in Indeed.com. The
absolute scale is presented in fig. 4.2. Results show that familiarity of Apache
Struts, JSF, Ruby on Rails is most required. Figure 4.3 presents the data in the
relative scale and therefore it depicts more accurate current trends in demands of

19

www.manaraa.com

web frameworks. It shows that very rapid growth in popularity have: Ruby on Rails,
Zend Framework, Django and CakePHP.

Figure 4.2: Job trends for web frameworks (scale: absolute)

Figure 4.3: Job trends for web frameworks (scale: relative)

Overall search trends from Google.com served as a validation of job trends. In
the figure 4.4 there is a comparison among the top four results from the jobs trends
results in relative scale. It is noticeable that there is a significant interest in Ruby
on Rails and recently it is equal to CakePHP’s trends. However, the trend for Ruby
on Rails has a falling tendency. As for the absolute scale (fig. 4.5), trends for all
frameworks have been stabilizing since 2008. It is clearly seen that, Apache Struts
is the most popular framework among Java frameworks.

Taking all statistics into consideration, the choice of popular frameworks for the
case studies involves: Ruby on Rails, CakePHP, Zend Framework and Apache Struts.
The overall choice is dictated by making the case studies diverse. Choosing frame-
works that were written in different languages: Ruby, PHP and Java will support

20

www.manaraa.com

Figure 4.4: Google Trends chart for web frameworks (with regard to fig. 4.3)

better validation of the classification scheme. Furthermore, only open source frame-
works were chosen, leaving popular, but based on the propriety platform, ASP.NET.
The special motivation behind the choice of Apache Struts is that it is one of the old-
est web frameworks and it is possibly the most well-described framework. As for the
CakePHP, it is noticeable that there is an increasing trend in using this framework
among other PHP frameworks. Reason in choosing two PHP frameworks is that
PHP is the most used scripting language in WWW (TIOBE Software BV, 2011).

Figure 4.5: Google Trends chart for web frameworks (with regard to fig. 4.2)

21

www.manaraa.com

4.2 Creating new classification scheme
First step in creating a classification scheme involves defining requirements which
the classification scheme will fulfill. The requirements should reflect the need of
usefulness, simplicity and high level of understandability of the classification scheme.

The classification scheme should have more than two problem categories, because
multi dimensionality would increase usefulness of the scheme. Other requirement
could be that each pattern could have many criteria to be ranked by. To avoid
information overload problems, each pattern should have from two to three criteria.

Moreover as Buschmann (1996, pp.363-364) suggests the classification scheme
must demonstrate main pattern properties, it should allow to add new patterns and
should be a some kind of a roadmap that will help developers find a needed pat-
tern quickly. This roadmap should reflect pattern’s natural criteria, like: a pattern
category or a problem category.

In the proposed classification scheme for web programming, the most useful crite-
rion would be the purpose since it would reflect recurring web application problems.
Following purposes can be defined (tab. 4.1):

purpose problem example
user interface templates, forms validation, localization

data persistence database access, session management
safety and security authentication, authorization

performance optimization caching
producing resources creating RSS feeds

extendending functionality creating plugins

Table 4.1: Purpose criteria

Other useful criterion would be a scope. Since many patterns are built on other
patterns, for example Active Record pattern can use Observer pattern, the scope
could address those problems. If a pattern is a part of other pattern’s construction,
then its scope will concern a framework scope otherwise a pattern scope, so for ex-
ample, the scope of ActiveRecord will be a framework scope and Observer’s will be
a pattern scope. The scope criterion would also validate how complex are relation-
ships in web frameworks. It is assumed that hierarchies are simple and relationships
among design patterns in web frameworks are closed.

Following matrix depicts proposed classification scheme (fig. 4.6):

framework pattern
user interface

data persistence Active Record Observer
safety and security

performance optimization
producing resources

extendending functionality

Figure 4.6: Proposed classification matrix example

This proposed classification scheme is a draft which after application to the
content, should be evaluated if it needs refinement.

22

www.manaraa.com

4.3 Design patterns in web frameworks
4.3.1 Ruby on Rails

Ruby on Rails is an open source web framework based on the Ruby programming
language. It was created by 37signals in 2004 and it available under the MIT (Mas-
sachusetts Institute of Technology) license. The latest version of the framework is
3.0. It is one of the most popular and supported open source projects with more
than more than 1,600 contributors (37signals, LLC, 2011). Examples of web appli-
cations based on Rails are: Twitter (twitter.com), Github (github.com) or Groupon
(groupon.com).

There are two main principles that are behind Rails design - DRY (’Don’t Repeat
Yourself’) and Convention over Configuration. The first principle instructs a devel-
oper to avoid writing repeating code and states that: "every piece of knowledge must
have a single, unambiguous, authoritative representation within a system"(Hunt and
Thomas, 2000, p.26). The second principle, CoC, means that a developer only needs
to use predefined rules that regulate everything that is unconventional.

The architecture behind Ruby on Rails is MVC. When a client sends a HTTP,
RSS, ATOM or SOAP request to a web server, for example Apache, WeBrick, Mon-
grel, Lighttpd or Nginx, the server forwards this request to a dispatcher e.g., invokes
FastCGI mod_ruby which loads ActionController that is Rails’ Application Con-
troller (fig. 4.7). ActionController’s role is to decide what decisions and actions
need to be taken to fulfill the client’s request.

Figure 4.7: Architecture of Ruby on Rails

ActionView is the view of the MVC in Rails and it contains methods that render
all templates, HTML pages, JavaScript and XML outputs. Helper modules that
can be seen as implementing View Helpers patterns, support template behavioral
extensions, for example AssetTagHelper is responsible for linking CSS style sheets
to the templates.

ActiveRecord element in Rails architecture is a design pattern described by

23

www.manaraa.com

Fowler (2003) in PoEAA book. It is responsible for object-relational mapping
(ORM), connecting to the database and modifying the data. There are several
patterns that are building ActiveRecord, for example, Adapter pattern is used to
adapt the application to work with different database management systems, like
MySQL or PostgreSQL and its interface is implemented in AbstractAdapter class.

Observer pattern is also part of the ActiveRecord. Observers receive callbacks
from the ActiveRecord and allow to extend functionality of the model class without
interfering Single Responsibility Principle and modifying its structure. Observers
can be used for various, unrelated for the model class purposes, like managing cache
or log events (Olsen, 2008).

Among other identified patterns (tab. 4.2) is for example Decorator pattern that
can be found in the package ActiveSupport where it decorates methods. Naming
convention and purpose suggest that Rails uses Builder patterns to create, e.g. atom
feeds. Proxy design pattern is located in ActionContoller helpers where it is used to
provide a proxy to access view helpers outside the actual views. Singelton pattern
example is located in Inflections class that is a set of defined rules for plural words.

Table 4.2: Design patterns in Ruby on Rails

24

www.manaraa.com

4.3.2 Zend Framework

Table 4.3: Design patterns in Zend Framework

25

www.manaraa.com

Zend Framework is an open source PHP web framework available under New BSD
License that was created in 2006 by Zend Technologies. The latest version of this
framework is 1.11.5 and it requires PHP 5. Among the features of the framework
are object relation mapping, unit testing, ACL-based security, special framework for
templates, caching and form validation. Moreover, Zend Framework is very complex
and built with many components. It contains the support for integration with Adobe
Air, popular APIs like Amazon or OpenID authentication. The architecture behind
Zend Framework is MVC with Zend_Controller as the controller and Zend_View
as the view. There is no Zend_Model since Zend does not directly support the
Model but it implements via specialized components, like: Zend_Db_Table etc.
Furthermore, Zend Framework contains a huge amount of design patterns from
every presented pattern classification. The identified design patterns are illustrated
in the table 4.3.

4.3.3 CakePHP

Table 4.4: Design patterns in CakePHP

26

www.manaraa.com

As Zend Framework, CakePHP is also a PHP web framework, but it was designed
using Ruby on Rails principles and models in 2005 by Cake Software Foundation.
As Rails it is open source and available under MIT License. The latest version
of CakePHP is 1.3.8 and it has support for internationalization, localization and
object relation mapping. Other features involve a testing framework that supports,
for example unit tests, object mocking and ACL-based security.

Table 4.4 illustrates patterns identified in CakePHP. Since this framework was
modeled after concepts found in Rails, there are some similarities in found design
patterns, like ActiveRecord and ViewHelper patterns.

4.3.4 Apache Struts

Table 4.5: Design patterns in Apache Struts

Apache Struts is a web framework based on J2EE platform for server-based program-
ming in Java. It is open source and available under Apache License 2.0. Apache
Struts is one of the first web application frameworks and was created in 2000 by
Craig McClanahan. The latest version of Struts is 2.2.1.1 and it supports ORM,
internationalization, localization and unit testing. However security and caching
frameworks are not included(The Apache Software Foundation, 2011). As other

27

www.manaraa.com

web frameworks, Struts architectural style is MVC. In Struts the model is the ap-
plication logic and data, views are in forms of JSP pages and ActionServlet with
Actions make the controller.

Since Struts uses J2EE technology, there are many design patterns described
in J2EE blueprints (tab. 4.5). For example, Service to Worker is a macro-level
pattern, because it consists of two patterns: FrontController and ViewHelper and
it is responsible for generating templates. FrontContoller pattern manages views,
navigation and security issues. Command pattern is a part of a Front Controller
and is implemented through Action classes. The use of Singleton pattern is mainly
in Action and ActionServlet since Struts creates only one Action per application
which benefits to performance optimization (Franciscus and McClanahan, 2002).

28

www.manaraa.com

5 Results and discussion
Generally, Zend Framework contains 69% of all patterns in the list, CakePHP - 41%,
Ruby on Rails - 31% and Apache Struts 50% (number of types of design patterns
identified in a framework by constant size of the list - 32 as seen in figures: 4.2-4.5).
That makes Zend Framework, a web framework with best traceability of design
patterns that leads to better comprehension of the source code.

As for the design patterns, there are easily noticeable outliners that are found in
every web framework, for example MVC and ApplicationContoller pattern. More-
over, ViewHelper pattern is always present to support Separation of Contents prin-
ciple. Decorator pattern is often used to extend functionality and Builder pattern to
produce resources. Almost not present in web frameworks are: Mediator, Memento,
Bridge, Flyweight and Visitor (tab. 5.1 - 5.4).

As for the classification scheme, ’User interface’ category contains most of the
patterns. ’Safety and security’ problem category seems to be vague since it is difficult
in many cases to state if a pattern conforms to this category. Lastly, the classifica-
tion scheme in a form of a matrix has become not useful. When the scope criterion:
pattern and framework was chosen, it was assumed that, in web frameworks, re-
lationships among patterns would be rather closed and hierarchies among patterns
would not be complex. However, it was revealed that patterns in web frameworks
have a tendency to form a web of relationships. There are many patterns that are
building materials for other patterns or are strongly related to one another. For
example:

• Service to Worker is built on View Helpers and Front Controller that is built
with Composite pattern (tab. 5.4);

• Strategy patterns or Proxies can be found implemented in View Helpers (tab.
5.2);

• View Helpers and Application Controller are stronlgy related to MVC, so it is
diffcult to logically separate them (tab. 5.1 - 5.4);

• Front Controller can use Singleton as a base and can be confused with Appli-
cation Controller (tab. 5.2);

• Two Step View (which is highly related to Transform View) and Composite
View are parts of the View in MVC (tab. 5.2);

• Builders that often build form elements related to the View, often build Com-
posites as well (tab. 5.2);

• Observers, Adapters and Proxies are often incorporated in building Active
Record classes (tab. 5.1, tab. 5.3);

• Registry pattern is concerted with Singleton (tab. 5.2, tab. 5.3).

Therefore it becomes very difficult to spot patterns within patterns with flat, 2D
scheme. The classification scheme in a form of a matrix loses hierarchical relation-
ships that could be illustrated via a tree or a map. The map of realtionships could
be similair to the classification by relationships proposed by Zimmer (1995).

To end, design pattern relationships play a bigger role in the web frameworks ar-
chitectures than it was assumed and as Zimmer (1995) concludes: ”applying design

29

www.manaraa.com

patterns requires a fair knowledge of both single design patterns and their rela-
tionships”. Hence the classification scheme must be refined to resemble a pattern
language.

framework pattern
user interface MVC, ViewHelper,

Singleton, Application
Controller

data persistence Active Record Observer, Adapter
safety and security Application Controller

performance optimization Observer
producing resources Builder

extendending functionality Decorator, ViewHelper Proxy, Observer,
Adapter

Table 5.1: Example of classification scheme for Ruby on Rails

framework pattern
user interface MVC, View Helper,

Front Controller
Two Step View,
Composite View,
Singelton, Proxy,

Strategy
data persistence Adapter, Registry, Table

Data Gateway
Singelton

safety and security Front Controller,
Singelton

performance optimization Factory Method,
Singleton, Strategy

producing resources AbstractFactory, Builder Iterator
extendending functionality Decorator, Factory

Method, ViewHelper
Proxy, Strategy

Table 5.2: Example of classification scheme for Zend Framework

framework pattern
user interface MVC, View Helper,

Front Controller
Composite

data persistence Active Record, Data
Mapper

Adapter

safety and security Strategy, Factory
method

performance optimization Registry Singleton
producing resources

extendending functionality ViewHelper

Table 5.3: Example of classification scheme for CakePHP

30

www.manaraa.com

framework pattern
user interface MVC, Service to Worker Front Controller, View

Helper, Command,
Composite View

data persistence Service Locator
safety and security Session Facade Front Controller

performance optimization Singleton
producing resources

extendending functionality Decorator, ViewHelper

Table 5.4: Example of classification scheme for Apache Struts

31

www.manaraa.com

6 Conclusions and further studies
This chapter ends the thesis and contains a discussion on future research. The first
question was: ”Which web application frameworks are popular?”. The answer for
this question is that popular web application frameworks are based on MVC pattern.
More exhaustive answer would be if used popularity metrics were extended to other
factors, like number or contributors, commits in the code repository, frequency of
releasing new versions etc, so that the results could bring new insights.

The second question concerned design patterns that can be found in the popular
web frameworks. It was revealed that there are some popular design patterns, for
example: MVC, ViewHelper, Application Controller or Decorator. Design patterns,
like: Mediator, Memento, Bridge, Flyweight or Visitor are not popular. Most of the
patterns concern graphical user interface issues and can be very similar or strongly
related to one another.

Finally, the answer to the third question is that proposed current classification
scheme must be reformed and needs further validation. It would be more useful if it
would look like a Zimmer classification map with strongly highlighted hierarchy rela-
tionships. Furthermore, cataloging effort should be conducted with the community
or at least some developers must interviewed to ensure correctness in categorization
of particular patterns.

In the future research, there are several aspects of the study to be addressed.
For example, the aspect of client-side web frameworks was unexplored, therefore it
could be fruitful to conduct such investigation on web frameworks that execute UI
on the browser side and make use of JavaScript and AJAX. Moreover, developing a
full taxonomy with a dictionary of the used elements could also be a step in devel-
oping a standard that could establish conventions of the construction of a generic
web framework and would reduce information overload problems when choosing a
web framework. Standard-complaint frameworks would ensure quality and promote
interoperability among web applications. Such standard could also contain stan-
dardized descriptions of patterns. Moreover, the scope of such standard could also
be extended to frameworks for testing and user interface in web applications.

32

www.manaraa.com

Bibliography
37signals, LLC (2011). Ruby on rails, [Online] Available from: http://
rubyonrails.org/.

Alexander, C. (1979). The timeless way of building: which makes possible for men
and buildings to become a part of natire and alive. Oxford U.P., New York.

Alexander, C., Ishikawa, S., Silverstein, M., and Jacobson, M. (1977). A pattern lan-
guage: towns, buildings, construction. Center for environmental structure series,
99-0150903-3 ; 2. Oxford U.P., New York.

Allen, R., Lo, N., and Brown, S. (2008). Zend Framework in Action. Manning
Publications Co., Greenwich, CT, USA.

Alur, D., Crupi, J., and Malks, D. (2003). Core J2EE patterns : best practices and
design strategies. Prentice Hall PTR, Upper Saddle River, N.J., 2. ed. edition.

Antoniol, G., Fiutem, R., and Cristoforetti, L. (1998). Using metrics to identify
design patterns in object-oriented software. In Proceedings of the 5th International
Symposium on Software Metrics, METRICS ’98, pages 23–, Washington, DC,
USA. IEEE Computer Society.

Bawden, D. and Robinson, L. (2009). The dark side of information: overload,
anxiety and other paradoxes and pathologies. J. Inf. Sci., 35:180–191.

Bergamaschi, S., Guerra, F., and Leiba, B. (2010). Guest editors’ introduction:
Information overload. Internet Computing, IEEE, 14(6):10 –13.

Brooks, F. (1995). The mythical man-month: essays on software engineering, chap-
ter No Silver Bullet - Essence and Accident. Addison-Wesley, Reading, Mass.,
anniversary ed. edition.

Buschmann, F. (1996). Pattern-oriented software architecture. [Vol. 1], A system of
patterns. Wiley, Chichester.

Buytaert, D. (2010, August). The Drupal overview, [Online] Available from: http:
//drupal.org/getting-started/before/overview.

Cornils, A. and Hedin, G. (2000). Statically checked documentation with design
patterns. In Technology of Object-Oriented Languages, 2000. TOOLS 33. Pro-
ceedings. 33rd International Conference on, pages 419 –430.

Dietrich, J. and Elgar, C. (2005, march-1 april). A formal description of design
patterns using OWL. In Software Engineering Conference, 2005. Proceedings.
2005 Australian, pages 243 – 250.

Dong, J. and Yang, S. (2003, oct.). Visualizing design patterns with a UML profile.
In Human Centric Computing Languages and Environments, 2003. Proceedings.
2003 IEEE Symposium on, pages 123 – 125.

Dori, D., Perelman, V., Shlezinger, G., and Reinhartz-Berger, I. (2005). Pattern-
based design recovery from object-oriented languages to object process methodol-
ogy. In Proceedings of the IEEE International Conference on Software - Science,

33

http://rubyonrails.org/
http://rubyonrails.org/
http://drupal.org/getting-started/before/overview
http://drupal.org/getting-started/before/overview

www.manaraa.com

Technology & Engineering, pages 77–82, Washington, DC, USA. IEEE Computer
Society.

Eden, A. H., Hirshfeld, Y., and Yehudai, A. (1998). Lepus - a declarative pattern
specification language.

Fowler, M. (2003). Patterns of enterprise application architecture. Addison-Wesley,
Boston, Mass.

Fowler, M. (2005, June). Inversionofcontrol, [Online] Available from: http:
//martinfowler.com/bliki/InversionOfControl.html.

Franciscus, G. and McClanahan, C. R. (2002). Struts in Action: Building Web Appli-
cations With the Leading Java Framework. Manning Publications Co., Greenwich,
CT, USA.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. M. (1995). Design patterns :
elements of reusable object-oriented software. Addison-Wesley, Reading, Mass.

Golding, D. (2008). Beginning CakePHP: From Novice to Professional. Apress,
Berkely, CA, USA, 1 edition.

Gueheneuc, Y., Sahraoui, H., and Zaidi, F. (2004). Fingerprinting design patterns.
In Proceedings of the 11th Working Conference on Reverse Engineering, pages
172–181, Washington, DC, USA. IEEE Computer Society.

Hunt, A. and Thomas, D. (2000). The pragmatic programmer: from journeyman to
master. Addison-Wesley, Boston, Mass.

Jazayeri, M. (2007). Some trends in web application development. Future of Software
Engineering, pages 199–213.

Johnson, R. E. (1997, October). Frameworks = (components + patterns). Commun.
ACM, 40:39–42.

Kitchenham, B., Pickard, L., and Pfleeger, S. (1995, July). Case studies for method
and tool evaluation. Software, IEEE, 12(4):52 –62.

Mapelsden, D., Hosking, J., and Grundy, J. (2002). Design pattern modelling and
instantiation using DPML. In Proceedings of the Fortieth International Conference
on Tools Pacific: Objects for internet, mobile and embedded applications, CRPIT
’02, pages 3–11, Darlinghurst, Australia, Australia. Australian Computer Society,
Inc.

Meffert, K. (2006). Supporting design patterns with annotations. Engineering of
Computer-Based Systems, IEEE International Conference on the, 0:437–445.

Niere, J., Schäfer, W., Wadsack, J., Wendehals, L., and Welsh, J. (2002). Towards
pattern-based design recovery. In Proceedings of the 24th International Conference
on Software Engineering, ICSE ’02, pages 338–348, New York, NY, USA. ACM.

Ohtsuki, M., Segawa, J., Yoshida, N., and Makinouchi, A. (1997, aug). Structured
document framework for design patterns based on SGML. In Computer Software
and Applications Conference, 1997. COMPSAC ’97. Proceedings., The Twenty-
First Annual International, pages 320 –323.

34

http://martinfowler.com/bliki/InversionOfControl.html
http://martinfowler.com/bliki/InversionOfControl.html

www.manaraa.com

Olsen, R. (2008). Design patterns in Ruby. Addison-Wesley, Upper Saddle River,
NJ.

Philippow, I., Streitferdt, D., Riebisch, M., and Naumann, S. (2005). An approach
for reverse engineering of design patterns. Software and Systems Modeling, 4:
55–70.

Pree, W. (1994). Meta patterns - a means for capturing the essentials of reusable
object-oriented design. In Proceedings of the 8th European Conference on Object-
Oriented Programming, ECOOP ’94, pages 150–162, London, UK. Springer-
Verlag.

RDF Working Group (2004). Resource Description Framework (RDF), [Online]
Available from: http://www.w3.org/RDF/.

Shklar, L. and Rosen, R. (2009). Web application architecture: principles, protocols,
and practices. Wiley, Chichester, 2. ed. edition.

Taibi, T. and Chek Ling Ngo, D. (2003, July). Formal specification of design patterns
- a balanced approach. Journal of Object Technology, 2(4):127–140.

Taylor, A. G. and Joudrey, D. N. (2009). The organization of information. Libraries
Unlimited, Westport, Conn., 3rd ed. edition.

The Apache Software Foundation (2011). Apache Struts, [Online] Available from:
http://struts.apache.org/.

TIOBE Software BV (2011, February). Tiobe programming community index
for february 2011, [Online] Available from: http://www.tiobe.com/index.php/
content/paperinfo/tpci/index.html.

Torchiano, M. (2002). Documenting pattern use in java programs. Software Main-
tenance, IEEE International Conference on, 0:0230.

Vaughan-Nichols, S. (2010). Will HTML 5 restandardize the web? Computer, 43
(4):13 –15.

Wendehals, L. (2003). Improving design pattern instance recognition by dynamic
analysis. In Proceedings of the ICSE 2003 Workshop on Dynamic Analysis
(WODA), pages 29 – 32.

Yacoub, S., Xue, H., and Ammar, H. (2000). Automating the development of
pattern-oriented designs for application specific software systems. In Application-
Specific Systems and Software Engineering Technology, 2000. Proceedings. 3rd
IEEE Symposium on, pages 163 –170.

Zimmer, W. (1995). Pattern languages of program design, chapter Relationships
between design patterns, pages 345–364. Addison-Wesley Publishing Co., New
York, NY, USA.

35

http://www.w3.org/RDF/
http://struts.apache.org/
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

www.manaraa.com

SE-351 95 Växjö / SE-391 82 Kalmar

Tel +46-772-28 80 00

dfm@lnu.se

Lnu.se

	1 Introduction
	1.1 Problem
	1.2 Purpose and research questions
	1.3 Scope
	1.4 Outline

	2 Background
	2.1 Design patterns and pattern languages
	2.1.1 Definition
	2.1.2 Example
	2.1.3 Approaches to classifications of design patterns
	2.1.4 Approaches to document design patterns
	2.1.5 Approaches to identify design patterns

	2.2 Web application
	2.2.1 History
	2.2.2 Overview

	2.3 Framework
	2.3.1 Definition
	2.3.2 Web application framework

	3 Method
	3.1 Overview
	3.2 Literature study
	3.3 Classification procedure
	3.4 Identifying patterns

	4 Realization
	4.1 Choosing frameworks for the analysis
	4.2 Creating new classification scheme
	4.3 Design patterns in web frameworks
	4.3.1 Ruby on Rails
	4.3.2 Zend Framework
	4.3.3 CakePHP
	4.3.4 Apache Struts

	5 Results and discussion
	6 Conclusions and further studies
	Bibliography

